Answer:
6 carbon dioxide molecules
Explanation:
The Calvin cycle generates the necessary reactions for the fixation of carbon in a solid structure for the formation of glucose and, in turn, regenerates the molecules for the continuation of the cycle.
The Calvin cycle is also known as the dark phase of photosynthesis or also called the carbon fixation phase. It is known as the dark phase because it is not light dependent as is the first phase or light phase
.
This second stage of photosynthesis fixes the carbon of the absorbed carbon dioxide and generates the precise number of biochemical elements and processes necessary to produce sugar and recycle the remaining material for continuous production.
The Calvin cycle uses the energy produced in the light phase of photosynthesis to fix the carbon dioxide (CO2) carbon in a solid structure such as glucose, in order to generate energy.
The glucose molecule composed of a six-carbon main structure will be further processed in glycolysis for the preparatory phase of the Krebs cycle, both part of the cellular respiration.
The Calvin cycle produces in six turns a six-carbon glucose molecule and regenerates three RuBP that will be catalyzed again by the RuBisCo enzyme with CO2 molecules for the restart of the Calvin cycle.
The Calvin cycle requires six molecules of CO2, 18 ATP and 12 NADPH produced in the light phase of photosynthesis to produce a glucose molecule and regenerate three RuBP molecules.
A visual representation of covalent bonding which represents the valence shell electrons in the molecule is said to be a Lewis structure. The lines represents the shared electron pairs and dots represents the electrons that are not involved in the bonding i.e lone pairs.
Number of valence electrons in each atom:
For Carbon, = 4
For Hydrogen, = 1
For Nitrogen, = 5
The Lewis structure of is shown in the attached image.
The formula of calculating formula charge = -(1)
where, F.C is formal charge, V.E is number of valence electrons, N.E is number of non-bonding electrons and B.E is number of bonding electrons.
Now, calculating the formal charge:
For on left side:
For :
For on right side:
The formula charge of each atom other than hydrogen is shown in the attached image.
Answer:
is b
Explanation:
es la b porque estpy estudiando lo mismo
Element at Extreme Left In Periodic Table:
The elements of Group I-A (1) are present at extreme left of the periodic table. They are called as Alkali Metals. Alkali Metals are strong metals. These elements can easily loose their valence electron. The valence shell electronic configuration of these elements is,
ns¹
where n is principle quantum number, which shows main energy level or shell. These metals can gain Noble gas configuration (stable configuration) either by loosing one electron or by gaining seven or more electrons. As it is quite reasonable to loose one electron instead of gaining seven or more electrons so these element easily loose one electron to gain noble as configuration. The Metallic character decreases along the period from left to right. So Group II-A (2) are second most metallic elements and so on. These metals at extreme left mainly exist in solid form.
Element at Extreme Right In Periodic Table:
Elements present at extreme right of the periodic table lacks the properties of metallic character and act as non-Metals. They have almost complete outermost shell or have the deficiency of one or two electrons. They are not as hard as metallic elements and they exist with complete octet like in Noble gases, or deficient with one electron (Halogens) or two electrons (oxygen group). These elements tend to gain or accept electron if their valence shell is deficient with required number of elements. Like the valence electronic configuration of Halogens is,
ns², np⁵
So, Halogens readily accept one electron and attain noble gas configuration. Elements at extreme left exist mainly in gas phase.