Answer:
The velocity when the ball hits the ground is obtained using v2. 2 = v1. 2 + 2 g Dy with v1=0 and Dy=h. Thus solving for v2 yields 17.1 m/s v2 = 2 g h =.
21 pages·330 KB
Answer:
8.0m/s²
Explanation:
meters per second squared is a unit of acceleration so 8.0m/s² is the answer
Answer:
A low difference in the concentration of the molecule across the media
Explanation:
Diffusion is a type of passive transport where the molecules move in the influence of concentration gradient of diffusing molecules i.e. from the higher concentration region to the lower concentration region. There are some factors which affect the rate of diffusion, these are written below -
- Mass of diffusing molecule - lighter molecules diffuse faster and heavier one diffuse relatively slower.
- Concentration gradient - rate of diffusion is higher if the difference in concentration of the diffusing particles is larger in the two regions.
- Distance traveled - molecules diffuse faster if they need to travel little distance during diffusion.
- Temperature - rate of diffusion will be greater at higher temperatures because the movement of diffusing molecules gets increased.
- Solvent density - rate of diffusion tend to be lower if the solvent has higher density.
Looking at these factors we can conclude that the second statement in the question tells about a negative impact regarding the diffusion because due to low difference in concentration across the two media, the rate of diffusion will be lower.
C. Temperature, chemical composition and mineral structure
Explanation:
The Bowen's reaction series illustrates the relationship between temperature, chemical composition and mineral structure.
The series is made up of a continuous and discontinuous end through which magmatic composition can be understood as temperature changes.
- The left part is the discontinuous end while the right side is the continuous series.
- From the series, we understand that a magmatic body becomes felsic as it begins to cool to lower temperature.
- A magma at high temperature is ultramafic and very rich in ferro-magnesian silicates which are the chief mineral composition of olivine and pyroxene. These minerals are predominantly found in mafic- ultramafic rocks. Also, we expect to find the calcic-plagioclase at high temperatures partitioned in the magma.
- At a relatively low temperature, minerals with frame work structures begins to form . The magma is more enriched with felsic minerals and late stage crystallization occurs here.
Learn more:
Silicate minerals brainly.com/question/4772323
#learnwithBrainly