Answer:
ω = √((3g/L)*(1 - Cos θ))
Step-by-step explanation:
We need to apply the Principle of Conservation of mechanical energy as follows
Ei = Ef ⇒ Ki + Ui = Kf + Uf
In the vertical position
ωi = 0 ⇒ Ki = 0
yi = L/2 ⇒ Ui = m*g*L/2
We can get the rotational inertia I using the formula
I = m*L²/3
then
Kf = I*ω²/2 = (m*L²/3)*ω²/2 = m*L²*ω²/6
Now, we obtain the potential energy Uf as follows
Uf = m*g*y
where
y = (L/2)*Cos θ
⇒ Uf = m*g*(L/2)*Cos θ
Now, we have
Ui = Kf + Uf
⇒ m*g*L/2 = (m*L²*ω²/6) + (m*g*(L/2)*Cos θ)
⇒ ω² = (3g/L)*(1 - Cos θ)
⇒ ω = √((3g/L)*(1 - Cos θ))
We need to know the coefficient of static friction in order to get the value of theta where slip takes place.