Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
Answer:
A
both forms of energy referred to in the question is light and heat energy
light energy is the visible energy that travels at a known constant speed of 3.0×10^9m/s
while heat energy is the invisible energy that travels in form of radiation at variable speeds
B. The partial pressure of N2 is 101 kPa
<h3>Further explanation</h3>
Given
volume = 22.4 L
1.0 mol of nitrogen and 2.0 mol of hydrogen at 0°C
Required
Total pressure and partial pressure
Solution
Ideal gas law :
PV = nRT
n total = 3 mol
T = O °C + 273 = 273 K
P = nRT/V
P = 3 x 0.08205 x 273 / 22.4
P total = 3 atm = 303,975 kPa
P Nitrogen = 1/3 x 303.975 = 101.325 kPa
P Hydrogen = 2/3 x 303.975 = 202.65 kPa
Answer: Different people want different things out of life
Your Welcome ^_^
Explanation:
Standardization is the process of creating protocols to guide the creation of a good or service based on the consensus of all the relevant parties in the industry. ... Standardization also helps in ensuring the safety, interoperability, and compatibility of goods produced.