The particles that carry charge through wires in a circuit are mobile electrons. The electric field direction within a circuit is by definition the direction that positive test charges are pushed. Thus, these negatively charged electrons move in the direction opposite the electric field.
Because the scientific method can go around in a circle as many times as neccisary to get the results you need
An Active solar energy system because it uses the sun to heat up the green house an I’m return the plants grow an produce food
Answer:
a) P=0.25x10^-7
b) R=B*N2*E
c) N=1.33x10^9 photons
Explanation:
a) the spontaneous emission rate is equal to:
1/tsp=1/3 ms
the stimulated emission rate is equal to:
pst=(N*C*o(v))/V
where
o(v)=((λ^2*A)/(8*π*u^2))g(v)
g(v)=2/(π*deltav)
o(v)=(λ^2)/(4*π*tp*deltav)
Replacing values:
o(v)=0.7^2/(4*π*3*50)=8.3x10^-19 cm^2
the probability is equal to:
P=(1000*3x10^10*8.3x10^-19)/(100)=0.25x10^-7
b) the rate of decay is equal to:
R=B*N2*E, where B is the Einstein´s coefficient and E is the energy system
c) the number of photons is equal to:
N=(1/tsp)*(V/C*o)
Replacing:
N=100/(3*3x10^10*8.3x10^-19)
N=1.33x10^9 photons