Distance traveled by him = circumference of that circular path = 2πr = 2π(3.5)
= 7π = 7×3.14 = 21.98 m
time = 8.9 s [ Given ]
Now, Average speed = distance / time
s = 21.98 / 8.9
s = 2.46 m/s
Hope this helps!
Answer:
The specific heat of aluminum is greater.
Explanation:
It lost the most heat.
When adding a solute to the solvent, the solution will then boil at a point much higher than the solvent itself. Therefore, it would take much longer for the solution to boil. Among the choices, the correct answer would be B. The water will boil at a higher temperature.
<span>Answer:
The moments of inertia are listed on p. 223, and a uniform cylinder through its center is:
I = 1/2mr2
so
I = 1/2(4.80 kg)(.0710 m)2 = 0.0120984 kgm2
Since there is a frictional torque of 1.20 Nm, we can use the angular equivalent of F = ma to find the angular deceleration:
t = Ia
-1.20 Nm = (0.0120984 kgm2)a
a = -99.19 rad/s/s
Now we have a kinematics question to solve:
wo = (10,000 Revolutions/Minute)(2p radians/revolution)(1 minute/60 sec) = 1047.2 rad/s
w = 0
a = -99.19 rad/s/s
Let's find the time first:
w = wo + at : wo = 1047.2 rad/s; w = 0 rad/s; a = -99.19 rad/s/s
t = 10.558 s = 10.6 s
And the displacement (Angular)
Now the formula I want to use is only in the formula packet in its linear form, but it works just as well in angular form
s = (u+v)t/2
Which is
q = (wo+w)t/2 : wo = 1047.2 rad/s; w = 0 rad/s; t = 10.558 s
q = (125.7 rad/s+418.9 rad/s)(3.5 s)/2 = 952.9 radians
But the problem wanted revolutions, so let's change the units:
q = (5528.075087 radians)(revolution/2p radians) = 880. revolutions</span>