Since g(x) varies with x, therefore:
g(x) = k/x where k is a constant.
So, first we need to get k. We are given that g(x) = 0.2 when x = 0.1
Substitute with these values to get k as follows:
g(x) = k/x
0.2 = k/0.1
k = 0.2*0.1 = 0.02
Now, the equation became:
g(x) = 0.02 / x
We need to get the g(x) when x = 1.6
Therefore, we will substitute with x in the equation and calculate the corresponding g as follows:
g(x) = 0.02 / 1.6
g(x) = 0.0125
Answer:
f(n)=-5-3n
Step-by-step explanation:
Given the recursive formula of a sequence
f(1)=−8
f(n)=f(n−1)−3
We are to determine an explicit formula for the sequence.
f(2)=f(2-1)-3
=f(1)-3
=-8-3
f(2)=-11
f(3)=f(3-1)-3
=f(2)-3
=-11-3
f(3)=-14
We write the first few terms of the sequence.
-8, -11, -14, ...
This is an arithmetic sequence where the:
First term, a= -8
Common difference, d=-11-(-8)=-11+8
d=-3
The nth term of an arithmetic sequence is determined using the formula:
T(n)=a+(n-1)d
Substituting the derived values, we have:
T(n)=-8-3(n-1)
=-8-3n+3
T(n)=-5-3n
Therefore, the explicit formula for f(n) can be written as:
f(n)=-5-3n
First answer is 4 chances and second answer is 2 chances
Please insert a picture of the question