The standard form of a quadratic equation is
, while the vertex form is:
, where (h, k) is the vertex of the parabola.
What we want is to write
as
First, we note that all the three terms have a factor of 3, so we factorize it and write:
.
Second, we notice that
are the terms produced by
, without the 9. So we can write:
, and substituting in
we have:
.
Finally, distributing 3 over the two terms in the brackets we have:
.
Answer:
Answer: C. The graph of f(x)= x2 is shifted down 36 units
Step-by-step explanation:
Answer:
30 m/s
Step-by-step explanation:
<em>p = mv</em>
<em>momentum</em><em> </em><em>=</em><em> </em><em>mass</em><em> </em><em>×</em><em> </em><em>velocity</em>
<em>here</em><em> </em><em>the</em><em> </em><em>momentum</em><em> </em><em>is</em><em> </em><em>60kgm</em><em>/</em><em>s</em>
<em>mass</em><em> </em><em>is</em><em> </em><em>2kg</em>
<em>substitute</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>equation</em>
<em>6</em><em>0</em><em> </em><em>=</em><em> </em><em>2v</em>
v= 30m/s
Using the denominator of 3 we know 3/3 would be equal to 1
Subtract 3/3 from 4/3 = 1/3
So 4/3 = 1 and 1/3
The answer is c.
By using subtraction of <em>yellow</em> areas from the <em>entire</em> squares, the areas of the <em>inscribed</em> shapes are listed below:
- 18 units
- 20 units
- 12 units
- 12 units
<h3>How to calculate the areas of the inscribed shapes</h3>
The areas of the <em>inscribed</em> shapes can be easily found by subtracting the <em>yellow</em> areas from the square, in order to find the value of <em>green</em> areas. Now we proceed to find the result for each case by using <em>area</em> formulae for triangles:
Case A
A = 6² - 0.5 · (3) · (6) - 0.5 · (3) · (6)
A = 36 - 18
A = 18 units
Case B
A = 6² - 4 · 0.5 · (2) · (4)
A = 36 - 16
A = 20 units
Case C
A = 6² - 0.5 · 6² - 0.5 · 6 · 2
A = 36 - 18 - 6
A = 12 units
Case D
A = 6² - 2 · 0.5 · 6 · 4
A = 36 - 24
A = 12 units
To learn more on inscribed areas: brainly.com/question/22964077
#SPJ1