1kg of water has greater internal energy compared to 1g of water because 1kg of water has more mass.
M = 22.1 g
V = 52.3 mL
D = ?
D = m/V
= 22.1/52.3
= 22.1*10/52.3*10
= 221/523
= 0.4
There. I’m sorry i forgot what exactly was the S.I. unit of density :(
<h3>
Answer:</h3>
1.2 × 10⁻⁸ mol Pb
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 7.2 × 10¹⁵ atoms Pb
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:
- [DA] Multiply/Divide [Cancel out units]:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
1.19562 × 10⁻⁸ mol Pb ≈ 1.2 × 10⁻⁸ mol Pb
Answer:
Yes
Explanation:
They are a unique type of eukaryote because they lack an important organelle: mitochondria. Mitochondria are essential for producing cellular energy in most eukaryotic cells. However, due to its habitat, it is able to acquire energy from a process called sulfur mobilization.
They are significant because they challenge the idea that eukaryotes need mitochondria to be classified as eukaryotic. However, they have other membrane-bound organelles such as a nucleus and Golgi apparatus, meaning they remain eukaryotic.
Research suggest they lost their mitochondria over time, rather than never having had them throughout their ancestry.
Because of all these reasons, they still meet the definition of a eukaryote.