Answer:
The answer is C: He graphed the function y=cot(2x-pi/4)+1 correctly but it was not the right function to graph. He should have graphed y=cot(2x-pi/2)+1.
Step-by-step explanation:
The reason why it is C is because we want a period of pi/2, which would mean that b must be equal to 2 (if you use the period equation for tan and cot, pi/b, in order for pi/b to be equal to pi/2, b must be 2). The form for a trigonometric function is: y = acotb(x-h)+k. And if you notice, the equation he uses has the b already distributed inside the parenthesis, which means that both x and h were already multiplied. If we divide 2x and pi/4 by two, we get x, but h becomes pi/8, which is not equal to pi/4 as required by the problem. The correct equation would be: y = cot(2x-pi/2)+1 because when you divide out the two from inside the parenthesis, you get: y = cot2(x-pi/4)+1, which is the equation that he should've graphed.
I hope this helped you out!
If you have any further questions don't be afraid to ask.