Answer:
the magnitude of the velocity of one particle relative to the other is 0.9988c
Explanation:
Given the data in the question;
Velocities of the two particles = 0.9520c
Using Lorentz transformation
Let relative velocity be W, so
v = ( u + v ) / ( 1 + ( uv / c²) )
since each particle travels with the same speed,
u = v
so
v = ( u + u ) / ( 1 + ( u×u / c²) )
v = 2(0.9520c) / ( 1 + ( 0.9520c )² / c²) )
we substitute
v = 1.904c / ( 1 + ( (0.906304 × c² ) / c²) )
v = 1.904c / ( 1 + 0.906304 )
v = 1.904c / 1.906304
v = 0.9988c
Therefore, the magnitude of the velocity of one particle relative to the other is 0.9988c
Answer:
B. As the temperature increases, the kinetic energy of the molecules increases.
Explanation:
When the temperature of an object increases, the kinetic energy of its particles increases, so the thermal energy of an object increases as its temperature increases.
Compression is above the equilibrium and rarefaction is below
Answer:
Kidneys filter our blood,
Explanation:
Hope this helped :)