<u>Given:</u>
Volume of 0.9% NaCl = 500 ml
Time (t) = 4 hrs
<u>To determine:</u>
The infusion rate of NaCl in ml/hr
<u>Explanation:</u>
Based on the information- 500 ml of NaCl is to be given over a time span of 4 hrs
Hence, the volume of NaCl to be administered per hr is:-
= 1 hr * 500 ml/4 hr = 125 ml
Ans: Infusion rate = 125 ml/hr
Answer:
Explanation:
We are given the mass of two reactants, so this is a limiting reactant problem.
We know that we will need mases, moles, and molar masses, so, let's assemble all the data in one place, with molar masses above the formulas and masses below them.
M_r: 17.03 32.00 18.02
4NH₃ + 5O₂ ⟶ 4NO + 6H₂O
m/g: 70.1 70.1
Step 1. Calculate the moles of each reactant
Step 2. Identify the limiting reactant
Calculate the moles of H₂O we can obtain from each reactant.
From NH₃:
The molar ratio of H₂O:NH₃ is 6:4.
From O₂:
The molar ratio of H₂O:O₂ is 6:5.
O₂ is the limiting reactant because it gives the smaller amount of H₂O.
Step 3. Calculate the theoretical yield.
Answer:
All matter contains heat energy. Heat energy is the result of the movement of tiny particles called atoms, molecules or ions in solids, liquids and gases. Heat energy can be transferred from one object to another. The transfer or flow due to the difference in temperature between the two objects is called heat.
Explanation:
Consider the isomerization of butane with equilibrium constant is 2.5 .The system is originally at equilibrium with :
[butane]=1.0 M , [isobutane]=2.5 M
If 0.50 mol/L of butane is added to the original equilibrium mixture and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?
Answer:
The equilibrium concentration of each gas:
[Butane] = 1.14 M
[isobutane] = 2.86 M
Explanation:
Butane ⇄ Isobutane
At equilibrium
1.0 M 2.5 M
After addition of 0.50 M of butane:
(1.0 + 0.50) M -
After equilibrium reestablishes:
(1.50-x)M (2.5+x)
The equilibrium expression will wriiten as:
x = 0.36 M
The equilibrium concentration of each gas:
[Butane]= (1.50-x) = 1.50 M - 0.36M = 1.14 M
[isobutane]= (2.5+x) = 2.50 M + 0.36 M = 2.86 M
Answer:
20.0928.
Explanation:
The average atomic mass is (90 * 19.992 + 10* 21) / 100
= 20.0928.