What is [H+] given that the measured cell potential is -0.464 V and the anode reduction ... What half-reaction occurs at the cathode during the electrolysis of molten ... PbO2(s) + 4H+(aq) + SO42-(aq) + 2e- → PbSO4(s) + 2H2O(l); E° = 1.69 V .... For the cell Cu(s)|Cu2+||Ag+|Ag(s), the standard cell potential is 0.46 V. A cell ... hopw this helps
Answer:
The average pressure in the container due to these 75 gas molecules is
Explanation:
Here Pressure in a container is given as
Here
- P is the pressure which is to be calculated
- ρ is the density of the gas which is to be calculated as below
Here
mass is to be calculated for 75 gas phase molecules as
Volume of container is 0.5 lts
So density is given as
- is the mean squared velocity which is given as
Here RMS is the Root Mean Square speed given as 605 m/s so
Substituting the values in the equation and solving
So the average pressure in the container due to these 75 gas molecules is
The most common pH indicator used in Simmons Citrate Agar is Bromthymol Blue (BTB)
Simmons Citrate Agar is a selective and differential medium used for the detection and differentiation of Enterobacteriaceae (gram-negative bacteria).
The medium contains sodium citrate as the sole carbon source, which is used to differentiate organisms based on their ability to utilize citrate as a sole carbon source.
The medium also contains pH indicators that change color based on the pH of the medium. The most common pH indicator used in Simmons Citrate Agar is Bromthymol Blue (BTB).
BTB is a pH indicator that turns yellow in acidic conditions and blue in basic conditions. As the bacteria metabolize the citrate in the medium, they produce acids, which cause the medium to become acidic.
This change in pH is detected by the BTB, which changes color from blue to yellow. The yellow coloration of the medium is an indication that the organism is utilizing citrate as a sole carbon source.
To know more about agar, click below:
brainly.com/question/4634808
#SPJ4
The correct answer is this one: "The amount of energy before and after the explosion depends on the type of reaction." The energy involved in an explosion is that t<span>he amount of energy before and after the explosion depends on the type of reaction, how strong and how weak; how destructive or less destructive.</span>
Answer:
0.456 M
Explanation:
Step 1: Write the balanced neutralization equation
HNO₂ + KOH ⇒ KNO₂ + H₂O
Step 2: Calculate the reacting moles of KOH
9.26 mL of 1.235 M KOH react.
0.00926 L × 1.235 mol/L = 0.0114 mol
Step 3: Calculate the reacting moles of HNO₂
The molar ratio of HNO₂ to KOH is 1:1. The reacting moles of HNO₂ are 1/1 × 0.0114 mol = 0.0114 mol.
Step 4: Calculate the initial concentration of HNO₂
0.0114 moles of HNO₂ are in 25.0 mL of solution.
[HNO₂] = 0.0114 mol / 0.0250 L = 0.456 M