Answer:
Evaporation
Explanation:
Evaporation is a form of mass tranfer phenomena where by water are moved from the earth surface into the atmosphere as vapours,it is path of the water cycle a decription of the path moved by land water until it turns into rain, humidity,air and temperature are factors that influence evaporation though evaporation can happen at all temperature
Fossil fuels are formed when dead, buried, and decomposing organisms are compressed under extreme pressure and heat for millions of years. We need other sources of fuel today... s<span>trictly speaking you don't. But if we hold off developing alternatives until the fossil fuels truly run out, then there will be absolute chaos getting the new ones available. Thats all i got
</span>
Explanation:
Only few supernova are observed in our galaxy -
Type II supernovae ( i.e. the explosions of the massive stars ) occurred in the Milky Way, and they might be hidden by the intervening dust if they are located in the more distant parts of our Galaxy .
Type Ia supernovae , which need a white dwarf star in the binary star system , are brighter than the type II supernovae , but some of them could also happen in the older parts of Galaxy which are hidden due to the buildup of the dust and gas .
Answer:
c. initial (x and y)
Explanation:
When a projectile is launched at a velocity with a launch angle, to solve it, we must first resolve the initial velocity into the x and y components. To do this will mean we have to treat it like a triangle due to the launch angle and the direction of the projectile.
Therefore, we will have to make use of trigonometric ratios which is also known by the mnemonic "SOH CAH TOA"
Thus, this method resolves the initial x and y velocities.
Answer:
proportional to the current in the wire and inversely proportional to the distance from the wire.
Explanation:
The magnetic field produced by a long, straight current-carrying wire is given by:
where
is the vacuum permeability
I is the current intensity in the wire
r is the distance from the wire
From the formula, we notice that:
- The magnitude of the magnetic field is directly proportional to I, the current
- The magnitude of the magnetic field is inversely proportional to the distance from the wire, r
Therefore, correct option is
proportional to the current in the wire and inversely proportional to the distance from the wire.