It must be sliding friction, because the fish is already in motion.
<span>Back in the day, one measured a printer's speed in CPM, which stands for characters per minute. Most of the modern printers that exist today, including the inkjet printer measure their speed in PPM, which is also known as pages per minute.</span>
Answer:
t=2.10 s
u= 47.40 m/s
Explanation:
given that
h= 21.8 m
x= 101 m
g=9.8 m/s²
Lets take horizontal speed of ball = u m/s
The vertical speed of the car at initial condition is zero ( v= 0).
We know that
v= 0 m/s
now by putting the values
21.8 = 1/2 x 9.8 x t²
t=2.10 s
This is time when ball was in motion.
Now in horizontal direction
x = u .t
101 = u x 2.1
u= 47.40 m/s
The tree might get swept away by the current and it will disappear when it catches on something
<span>2002 seconds, or 33 minutes, 22 seconds.
First, let's calculate how many joules it will take to lift 78 kg against gravity for 1100 meters. So:
78 kg * 9.8 m/s^2 * 1100 m = 840840 kg*m^2/s^2
Now a watt is defined as kg*m^2/s^3, so a division of the required joules should give us a convenient value of seconds. So:
840840 kg*m^2/s^2 / 420 kg*m^2/s^3 = 2002 seconds.
And 2002 seconds is the same as 33 minutes, 22 seconds.</span>