You'll have to be more specific, like what is each side, as in height, width or length. Sorry!
Answer:
10 quarters = $2.50
10 nickels = $0.50
that leaves $0.20 for other coins (dimes / pennies)
Step-by-step explanation:
First, suppose she has only quarters and nickels and no other coins. Then if C is the identical number of coins of each type, then 5C + 25C = 320, so 30C = 320 and 3C = 32, but there is no integer solution to this. So she must have at least one other type of coin.
Assume she has only quarters, nickels, and dimes. Then if D is the number of dimes, 5C + 25C + 10D = 320, which means 30C + 10D = 320, or 3C + D = 32. The smallest D can be is 2, leaving 3C = 30 and thus C = 10. So in this scenario she would have 10 quarters, 10 nickels, and two dimes to make $2.50 + $0.50 + $0.20 = $3.20.
This has to be the highest number, because if she had 11 quarters and 11 nickels, that alone would add up to 11(0.25) + 11(0.05) = $3.30, which would already be too much.
Answer:
Acute scalene triangle.
Step-by-step explanation:
Acute scalene triangle.
Sides: a = 4 b = 7 c = 8
Area: T = 13.998
Perimeter: p = 19
Semiperimeter: s = 9.5
Angle ∠ A = α = 29.995° = 29°59'41″ = 0.524 rad
Angle ∠ B = β = 61.028° = 61°1'42″ = 1.065 rad
Angle ∠ C = γ = 88.977° = 88°58'37″ = 1.553 rad
Height: ha = 6.999
Height: hb = 3.999
Height: hc = 3.499
Median: ma = 7.246
Median: mb = 5.268
Median: mc = 4.062
Inradius: r = 1.473
Circumradius: R = 4.001
Vertex coordinates: A[8; 0] B[0; 0] C[1.938; 3.499]
Centroid: CG[3.313; 1.166]
Coordinates of the circumscribed circle: U[4; 0.071]
Coordinates of the inscribed circle: I[2.5; 1.473]
Exterior (or external, outer) angles of the triangle:
∠ A' = α' = 150.005° = 150°19″ = 0.524 rad
∠ B' = β' = 118.972° = 118°58'18″ = 1.065 rad
∠ C' = γ' = 91.023° = 91°1'23″ = 1.553 rad
Answer: 6600 cu in
Step-by-step explanation: (12*10*40=4800)+(10*10*18=1800)=6600
Answer:
Distance from the airport = 894.43 km
Step-by-step explanation:
Displacement and Velocity
The velocity of an object assumed as constant in time can be computed as
Where is the displacement. Both the velocity and displacement are vectors. The displacement can be computed from the above relation as
The plane goes at 400 Km/h on a course of 120° for 2 hours. We can compute the components of the velocity as
The displacement of the plane in 2 hours is
Now the plane keeps the same speed but now its course is 210° for 1 hour. The components of the velocity are
The displacement in 1 hour is
The total displacement is the vector sum of both
The distance from the airport is the module of the displacement: