Answer:
rate = k[A][B] where k = k₂K
Explanation:
Your mechanism is a slow step with a prior equilibrium:
(The arrow in Step 1 should be equilibrium arrows).
1. Write the rate equations:
2. Derive the rate law
Assume k₋₁ ≫ k₂.
Then, in effect, we have an equilibrium that is only slightly disturbed by C slowly reacting to form D.
In an equilibrium, the forward and reverse rates are equal:
k₁[A][B] = k₋₁[C]
[C] = (k₁/k₋₁)[A][B] = K[A][B] (K is the equilibrium constant)
rate = d[D]/dt = k₂[C] = k₂K[A][B] = k[A][B]
The rate law is
rate = k[A][B] where k = k₂K
Water is always on the move. Rain falling today may have been water in a distant ocean days before. And the water you see in a river or stream may have been snow on a high mountaintop. Water is in the atmosphere, on the land, in the ocean, and underground. It moves from place to place through the water cycle.
Where's the water?
There are about 1.4 billion km3 of water (336 million mi3 of water) on Earth. That includes liquid water in the ocean, lakes, and rivers. It includes frozen water in snow, ice, and glaciers, and water that’s underground in soils and rocks. It includes the water that’s in the atmosphere as clouds and vapor.
If you could put all that water together – like a gigantic water drop – it would be 1,500 kilometers (930 miles) across.
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value =
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:
Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
Explanation:
<em><u>Solutions. 1. If 47 g of KCl dissolved in enough water to give 375 mL of soloution, what is the molarity ... vo volume of solute . ... v/v ethanol, how much 95% v/v ethanol ... prepare 200. mL ...</u></em>
Answer: HCl+NaHCO₃=NaCl+CO₂+H₂O
Explanation: