<span>XY4Z2-->Square planar (Electron domain geometry: Octahedral) sp3d2
XY4Z-->Seesaw (Electron domain geometry: Trigonal bipyramidal) sp3d
XY5Z-->Square pyramidal (Electron domain geometry: Octahedral) sp3d2
XY2Z3-->Linear (Electron domain geometry: Trigonal bipyramidal) sp3d
XY2Z-->Bent (Electron domain geometry: Trigonal planar) sp2
XY3Z-->Trigonal pyramidal (Electron domain geometry: Tetrahedral) sp3
XY2Z2-->Linear (Electron domain geometry: Tetrahedral) sp3
XY3Z2-->T shaped (Electron domain geometry: Trigonal bipryamidal) sp3d
XY2-->Linear (Electron domain geometry: Linear) sp
XY3 Trigonal planar (Electron geometry: Trigonal planar) sp2
XY4-->Tetrahedral (Electron domain geometry: tetrahedral) sp3
XY5-->Trigonal bipyramidal (Electron domain geometry: Trigonal bipyramidal) sp3d
XY6-->Octahedral (Electron domain geometry: Octahedral) sp3d2</span>
The required amount of silver nitrate to produce 16.2g of silver is 25.48 grams.
<h3>What is the relation between mass & moles?</h3>
Relation between the mass and moles of any substance will be represented as:
n = W/M, where
- W = given mass
- M = molar mass
Moles of silver = 16.2g / 107.8g/mol = 0.15mol
From the stoichiometry of the given reaction it is clear that, same moles of silver nitrate is required to produce same moles of silver. So 0.15 moles of silver nitrate is required.
Mass of silver nitrate = (0.15mol)(169.87g/mol) = 25.48g
Hence required mass of silver nitrate is 25.48g.
To know more about mass & moles, visit the below link:
brainly.com/question/19784089
#SPJ4
Oxygen gains two electrons when it bonds to form a complete outer shell and magnesium loses two electrons when bonding to gain its full outer shell.
As electrons are negative, the oxygen (which gains electrons) will become negative and the magnesium (which loses electrons) will become positive.
The negative and positive ions will then attract to one another due to the magnetic pull of the positive and negative.
I think the answer is C. acidic
Condenser Lens - This lens system is located immediately under the stage and focuses the light on the specimen.