Answer:
A
Step-by-step explanation:
The domain of a function is the span of x-values covered by the graph.
From the graph, we can see that it stretches from x=-7 to x=2.
However, note that at x=-7, the dot is closed (shaded in). In other words, x=-7 <em>is</em> in our domain.
On the other hand, at x=2, the dot is not shaded. So, x=2 is <em>not</em> included in our domain.
Therefore, our domain all are numbers between -7 and 2 including -7 (and not including 2).
As a compound inequality, this is:
So, our answer is A.
Also note that we use x instead of p(x) because the domain relates to the x-variable. If we were to instead find the range, then we would use p(x).
Answer:
880 high-quality version
Step-by-step explanation:
I think the below is your full question:
<em>A Web music store offers two versions of a popular song. The size of the standard version is 2.1megabytes (MB). The size of the high-quality version is 4.5 MB. Yesterday, there were 1290 downloads of the song, for a total download size of 4821 MB. How many downloads of the high-quality version were there?</em>
Here is my answer:
Let x is the number of high-quality version
So the number of standard version= 1290 - x
We also know: total download size of 4821 MB. which means:
4.5x + 2.1(1290-x) = 4821
<=> 4.5x+2709-2.1x=4821
<=> 2.4x=2112
<=> x=880
So there were 880 high-quality version
Answer:
i dont understand?
Step-by-step explanation:
Answer:
50 is the intrest 550 os the amount
Answer:
Step-by-step explanation: Explanation:
If
L
,
H
and
W
represent the length, height and width of the prism, then the volume of the rectangular prism is :
V
=
L
.
H
.
W
............. (1)
Given :
V
=
x
3
+
11
x
2
+
20
x
−
32
;
............... (2)
W
=
(
x
−
1
)
;
H
=
(
x
+
8
)
.
Let
L
=
(
x
+
l
0
)
be the expression for the length, then the RHS of equation (1) becomes
L
.
H
.
W
=
(
x
−
l
0
)
(
x
+
8
)
(
x
−
1
)
,
=
(
x
+
l
0
)
(
x
2
+
7
x
−
8
)
=
(
x
+
l
0
)
(
x
2
+
7
x
−
8
)
=
x
3
+
(
7
+
l
0
)
x
2
+
(
7
l
0
−
8
)
x
−
8
l
0
..... (3)
Comparing this to the LHS of equation (1), we get the following set of equations to solve for
l
0
,
7
+
l
0
=
11
;
7
l
0
−
8
=
20
;
8
l
0
=
32
;
l
0
=
4
Therefore
L
=
(
x
+
4
)