Answer:
we have formula of frequency :
frequency(f)= speed of sound(c)/wavelength(λ)
for wavelength we swipe it with frequency as follows
λ=c/f
λ=300,000,000/101,700,000
λ=2.949
Centripetal force = (mass) x (speed)² / (radius)
= (20 kg) x (20 m/s)² / (20 m)
= (20 x 20 / 20) (kg-meter/sec²)
= 20 newtons
The force of attraction between two objects can be illustrated using Newton's Law of Universal Gravitation.
The relation between the different parameters is shown in the attached image.
Now, from the relation, we can deduce that the force between the two objects is directly proportional to the masses of the two objects.
This means that, if the mass of one object is doubled, then the force between the two objects will also be doubled.
12.5 times 14 and convert to meters its 1.75 meters per second
Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂= = 6.57 m/s