More the no. of hydrogen ions more is the solution acidic.
pH means the power of hydrogen that determines the concentration of hydrogen ions or the level of acidiy or basicity of a solution.
so more the hydrogen ions more will be the Power of Hydrogen (pH) and thus more wil be the acidity.
Answer:
[Co(NH₃)₄(H₂O)₂]³⁺: coordination number = 6.
[Cr(EDTA)]⁻: coordination number = 6.
[Pt(NH₃)₄]²⁺: coordination number = 4.
Na[Au(Cl)₂]: coordination number = 2.
Explanation:
In this complex, Co is bonded with 4 molecules of NH₃ (with 4 coordinate bonds, one bond for each molecule) and 2 molecules of H₂O (with 2 coordinate bonds, one bond for each molecule) forming the complex with 6 coordinate bonds.
∴ coordination number = 6.
In this complex, Cr is bonded with 1 molecules of EDTA (with 6 coordinate bonds, 4 O atoms and 2 N atoms in EDTA molecule).
∴ coordination number = 6.
In this complex, Pt is bonded with 4 molecules of NH₃ (with 4 coordinate bonds, one bond for each molecule).
coordination number = 4.
In this complex, Au is bonded with 2 atoms of Cl (with 2 coordinate bonds, one bond for each atom).
coordination number = 2.
Answer:
Part 1: 7.42 mL; Part 2: 3Cu²⁺(aq) + 2PO₄³⁻(aq) ⟶ 2Cu₃(PO₄)₂(s)
Explanation:
Part 1. Volume of reactant
(a) Balanced chemical equation.
(b) Moles of CuCl₂
(c) Moles of Na₃PO₄
The molar ratio is 2 mmol Na₃PO₄:3 mmol CuCl₂
(d) Volume of Na₃PO₄
Part 2. Net ionic equation
(a) Molecular equation
(b) Ionic equation
You write molecular formulas for the solids, and you write the soluble ionic substances as ions.
According to the solubility rules, metal phosphates are insoluble.
6Na⁺(aq) + 2PO₄³⁻(aq) + 3Cu²⁺(aq) + 6Cl⁻(aq) ⟶ Cu₃(PO₄)₂(s) + 6Na⁺(aq) + 6Cl⁻(aq)
(c) Net ionic equation
To get the net ionic equation, you cancel the ions that appear on each side of the ionic equation.
<u>6Na⁺(aq)</u> + 2PO₄³⁻(aq) + 3Cu²⁺(aq) + <u>6Cl⁻(aq)</u> ⟶ Cu₃(PO₄)₂(s) + <u>6Na⁺(aq)</u> + <u>6Cl⁻(aq)</u>
The net ionic equation is
3Cu²⁺(aq) + 2PO₄³⁻(aq) ⟶ Cu₃(PO₄)₂(s)