<span>The particles in a liquid are not stuck in fixed positions, which is why liquids flow to take the shape of a container into which they are placed. Hope this helps :D</span>
Because they are closer to the farther end of the periodic table. Since they are closer to the farther end they don't want to give away their electrons because it would be easier for them to just steal them from other atoms.
Answer:
Part A
Ag+ is the Lewis acid and NH3 is the Lewis base.
Part B
AlBr3 is the Lewis acid and NH3 is the Lewis base.
Part C
AlCl3 is the Lewis acid and Cl− is the Lewis base.
Explanation:
A Lewis acid is any specie that accepts a lone pair of electrons. Ag^+, AlBr3 and AlCl3 all accepted lone pairs of electrons according to the three chemical reaction equations shown. Hence, they are Lewis acids.
A Lewis base donates a lone pair of electrons. They include neutral molecules having lone pair of electrons such as NH3 or negative ions such as Cl- .
Answer:
34g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
H2S + 2AgNO3 —> 2HNO3 + Ag2S
Next, we shall determine the number of mole of H2S required to react with 2 moles of AgNO3.
This is illustrated below:
From the balanced equation above,
We can see that 1 mole of H2S is required to react completely with 2 moles of AgNO3.
Finally, we shall convert 1 mole of H2S to grams. This is shown below:
Number of mole H2S = 1 mole
Molar mass of H2S = (2x1) + 32 = 34g/mol
Mass = number of mole x molar Mass
Mass of H2S = 1 x 34
Mass of H2S = 34g
Therefore, 34g of H2S is needed to react with 2 moles of AgNO3.