Answer:
10 red apples and 6 green apples
Step-by-step explanation:
first you multiply 5×2 to get 10 apples
then you multiply 3×2 to get 6 apples
I will explain you and pair two of the equations as an example to you. Then, you must pair the others.
1) Two circles are concentric if they have the same center and different radii.
2) The equation of a circle with center xc, yc, and radius r is:
(x - xc)^2 + (y - yc)^2 = r^2.
So, if you have that equation you can inmediately tell the coordinates of the center and the radius of the circle.
3) You can transform the equations given in your picture to the form (x -xc)^2 + (y -yc)^2 = r2 by completing squares.
Example:
Equation: 3x^2 + 3y^2 + 12x - 6y - 21 = 0
rearrange: 3x^2 + 12x + 3y^2 - 6y = 21
extract common factor 3: 3 (x^2 + 4x) + 3(y^2 -2y) = 3*7
=> (x^2 + 4x) + (y^2 - 2y) = 7
complete squares: (x + 2)^2 - 4 + (y - 1)^2 - 1 = 7
=> (x + 2)^2 + (y - 1)^2 = 12 => center = (-2,1), r = √12.
equation: 4x^2 + 4y^2 + 16x - 8y - 308 = 0
rearrange: 4x^2 + 16x + 4y^2 - 8y = 308
common factor 4: 4 (x^2 + 4x) + 4(y^2 -8y) = 4*77
=> (x^2 + 4x) + (y^2 - 2y) = 77
complete squares: (x + 2)^2 - 4 + (y - 1)^2 - 1 = 77
=> (x + 2)^2 + (y - 1)^2 = 82 => center = (-2,1), r = √82
Therefore, you conclude that these two circumferences have the same center and differet r, so they are concentric.
Answer:
We can do it with envelopes with amounts $1,$2,$4,$8,$16,$32,$64,$128,$256 and $489
Step-by-step explanation:
- Observe that, in binary system, 1023=1111111111. That is, with 10 digits we can express up to number 1023.
This give us the idea to put in each envelope an amount of money equal to the positional value of each digit in the representation of 1023. That is, we will put the bills in envelopes with amounts of money equal to $1,$2,$4,$8,$16,$32,$64,$128,$256 and $512.
However, a little modification must be done, since we do not have $1023, only $1,000. To solve this, the last envelope should have $489 instead of 512.
Observe that:
- 1+2+4+8+16+32+64+128+256+489=1000
- Since each one of the first 9 envelopes represents a position in a binary system, we can represent every natural number from zero up to 511.
- If we want to give an amount "x" which is greater than $511, we can use our $489 envelope. Then we would just need to combine the other 9 to obtain x-489 dollars. Since , by 2) we know that this would be possible.
-0.6875 is the answer to number 5
<span>potential; kinetic is the answer.</span>