Answer:
See below
Step-by-step explanation:
Remember that quadratic functions are parabolas when graphed. The solutions are where the parabola crosses the x-axis.
1. The vertex of the parabola in f(x) is (0, 9) which is above the x-axis and the parabola opens up. So the parabola does not cross the x-axis. Therefore the solutions are imaginary.
2. The vertex of the parabola in g(x) is (9, 0) which is on the x-axis and parabola opens up. Therefore, there is a double solution.
3. The vertex of the parabola in h(x) is (-1, -9) which is below the x-axis and the parabola opens up. Therefore, there are two real solutions.
I know this is a long explanation, but that is a way of looking at the problem.
Use Desmons if you want to look at a better picture
Set the factor '(4 + -1x)' equal to zero and attempt to solve: Simplifying 4 + -1x = 0 Solving 4 + -1x = 0 Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + -1x = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -1x = 0 + -4 -1x = 0 + -4 Combine like terms: 0 + -4 = -4 -1x = -4 Divide each side by '-1'. x = 4 Simplifying x = 4
Easy answer
Its 0
I hope it's correct Good luck...
4 Americans can arrange themselves in 4! ways.similarly ,3 Frenchmen can arrange themselves in 3! ways.3 Englishmen can arrange themselves in 3! ways.now these 3 groups of same nationality people can be arranged among themselves in 3! ways.so total number of ways = 3!4!3!3!