Yes. Either way though, humans have more chromosomes than any other species.
Explanation:
V=u+at
where,
v=final speed
u=initial speed,(starting speed)
a=acceleration
t=time
- v=u+at = 6=2+a*2
6=2+2a
2a=6-2
2a=4
a=4/2 = 2
a =2
2. to find time taken
v=u+at
25=5*2t
2t=25-5
2t=20
t=20/2
t=10sec
3. finding final speed
v=u+at
v=4+10*2
=4+20
v=24m/sec
5.v=u+at
=5+8*10
=5+80
V=85m/sev
6. v=u+at
8=u+4*2
8=u+8
U=8/8
u=1
these are your missing values
Answer:
Explanation: This Law of Superposition is fundamental to the interpretation of Earth history, because at any one location it indicates the relative ages of rock layers and the fossils in them.
Answer:
C)
Explanation:
The buoyancy and weight of the wood have to be equal for the system to be in equilibrium. The total mass (then, weight) of the wood is the same, so the total buoyancy has to be the same. Since buoyancy is the weight of the liquid displaced, the volume of liquid displaced will be the same in either case, which means that the water level will remain unchanged.
Answer:
Approximately 21 km.
Explanation:
Refer to the not-to-scale diagram attached. The circle is the cross-section of the sphere that goes through the center C. Draw a line that connects the top of the building (point B) and the camera on the robot (point D.) Consider: at how many points might the line intersects the outer rim of this circle? There are three possible cases:
- No intersection: There's nothing that blocks the camera's view of the top of the building.
- Two intersections: The planet blocks the camera's view of the top of the building.
- One intersection: The point at which the top of the building appears or disappears.
There's only one such line that goes through the top of the building and intersects the outer rim of the circle only once. That line is a tangent to this circle. In other words, it is perpendicular to the radius of the circle at the point A where it touches the circle.
The camera needs to be on this tangent line when the building starts to disappear. To find the length of the arc that the robot has travelled, start by finding the angle which corresponds to this minor arc.
This angle comes can be split into two parts:
.
Also,
.
The radius of this circle is:
.
The lengths of segment DC, AC, BC can all be found:
In the two right triangles and , the value of and can be found using the inverse cosine function:
.
The length of the minor arc will be:
.