Answer:
Explanation:
To determine the molecular formula of the compound, the empirical formula must be determined first. To determine the empirical formula, the percentage of each constituent is divided by its molar mass. This is shown below
Carbon = 60/12 = 5
Oxygen = 32/16 = 2
Hydrogen = 8/1 = 8
The next step is to divide each ratio by the smallest value. The smallest value is 2. It becomes
Carbon = 5/2 = 2.5
It is approximated to 3
Oxygen = 2/2 = 1
Hydrogen = 8/2 = 4
Therefore, the empirical formula is
C3H4O
From the given relative molecular mass of the compound, the molecular formula can be determined
Answer:
Earth has a magnetic force that is strongest at its core.
Answer:
2KClO3 》》2KCl +3O2
C+ O2》》CO2
number of C moles
Required O2 moles (According to the mole ratio )
Relevant to the first equation, find the moles the KClO3, which is used to produce that amount of O2 moles
Now you can find the mass of KClO3
I mentioned the useful steps which can guide you to get the answer.
Explanation:
When it comes to physical changes like phase changes, there are two types of heat energy: sensible heat and latent heat. Sensible heat is the heat absorbed/released when you heat the substance but it doesn't change phase. An example would be heating lukewarm water. The substance is liquid all throughout. Latent heat, on the other hand, is the heat absorbed/released when there is a phase change. An example would be boiling water, because it changes liquid to vapor.
Hence, for freezing liquid, you use the latent heat, specifically the heat of fusion. The answer should be
2.5 g * (1 mol/18.02 g) * 6.03 kJ/mol = 0.84 kJ/mol
The answer is not in the choices. You only use Hvap if you boil water.