Rate = k * [A]^2 * [B]^1
<span>Use the data from any trial to calculate k. </span>
<span>k = (rate)/([A]^2 * [B]^1) </span>
<span>E.g., for Trial 1, we have </span>
<span>rate = 3.0×10−3 M/s </span>
<span>[A] = 0.50 M </span>
<span>[B] = 0.010 M </span>
<span>Plug those numbers in and crank out the answer. </span>
<span>Now with the calculated value of k, calculate the initial rate for [A] = 0.50 M and [B] = 0.075 M </span>
<span>rate = k * [A]^2 * [B]^1 </span>
<span>k = calculated value </span>
<span>[A] = 0.50 M </span>
<span>[B] = 0.075 M</span>
The surface waters in regions of coastal up-welling are cold and nutrient-rich, promoting robust growth of plants and the animals that feed on them. ... When too many nutrients are released into seas, bays, and estuaries, it can create an overabundance of decaying plants and animals, depleting oxygen from the water.
Answer:
b. ΔH and ΔS are negative at all temperatures .
Explanation:
During the process of condensation ,
The gaseous state convert to liquid state ,
Hence , the entropy of the system reduces , i.e. , the randomness decreases .
And the value for entropy is negative ,
hence ,
Δ S = negative ,
Δ H = negative ,
Since ,
The heat is releasing from system .
hence , the most appropriate option will be ΔH and ΔS are negative at all temperatures .
<span>ions are solutions containing ions that react with acids or bases to minimize their effects. </span>
Answer:
Structures are given below.
Explanation:
- Treatment of 2-bromo-2-methylbutane with KOH in ethanol will give elimination of HBr through E2 mechanism.
- H atoms adjacent to Br will be eliminated.
- 2-bromo-2-methylbutane has two possible adjacent H atoms that can be eliminated giving mixture of products.
- Product of this elimination reaction is alkene. Here saytzeff fule is followed during elimination. So most substituted alkene will be major product.
- Structure of alkenes are given below.