The most common reaction that causes spoilage isn't a reaction at all. Molds and Bacteria are attracted to the easily found presence of water in the fruit. They find a natural place to reproduce and what they do causes spoilage.
Very few sources talk about the chemical changes that take place. If you put fruit in a refrigerator it slows the spoiling process down. That means that the chemical reaction has to be endothermic (it requires heat to occur)
The process of spoilage is speeded up by bananas for example, giving up Ethylene gas. You do not want to put a banana with tomatoes, because tomatoes are very sensitive to Ethylene. (It's OK to eat them together. They make a terrific salad. Yum).
I cannot find a definitive source that connects all this together, but the conduct of the fruit in refrigerators confirms what I am saying.
Spoilage is a very complex reaction and interaction with the environment. I have given you a hint of what happens but you should search it out to convince yourself of the outcome.
Answer:
1. 0.0154mole of PbS
2. Double displacement reaction
Explanation:
First, let write a balanced equation for the reaction. This is illustrated below:
Pb(CH3COO)2 + H2S —> PbS + 2 CH3COOH
Molar Mass of Pb(CH3COO)2 = 207 + 2(12 + 3 + 12 + 16 +16) = 207 + 2(59) = 207 + 118 = 325g
Mass of Pb(CH3COO)2 = 5g
Number of mole = Mass /Molar Mass
Number of mole of Pb(CH3COO)2 = 5/325 = 0.0154mole
From the equation,
1mole of Pb(CH3COO)2 produced 1mole of PbS.
Therefore, 0.0154mole of Pb(CH3COO)2 will also produce 0.0154mole of PbS
2. The name of the reaction is double displacement reaction since the ions in the two reactants interchange to form two different products
Answer:
= 331.81 g
Explanation:
Molarity is calculated by the formula;
Molarity = Moles/volume in liters
Therefore;
Moles = Molarity ×Volume in liters
= 0.35 M × 1.575 L
= 0.55125 Moles
But; Molar mass of Ba3(PO4)2 is 601.93 g/mol
Thus;
Mass = 0.55125 moles × 601.93 g/mol
<u>= 331.81 g</u>
1 is b 2 is a 3 is d 4 is a 5 is c