Answer:
Yes, Pb3(PO4)2.
Explanation:
Hello there!
In this case, according to the given balanced chemical reaction, it is possible to use the attached solubility series, it is possible to see that NaNO3 is soluble for the Na^+ and NO3^- ions intercept but insoluble for the Pb^3+ and PO4^2- when intercepting these two. In such a way, we infer that such reaction forms a precipitate of Pb3(PO4)2, lead (II) phosphate.
Regards!
Because that's where they come from. Coal, oil, and natural gas are the products
of dead dinosaurs rotting in the ground under great pressure for millions of years.
Answer:
The answer is 3-Phenylpropanoic acid (see attached structure)
Explanation:
From spectral data:
3005 cm-1 ⇒ carboxylic acid (broad band)
1670 cm-1 ⇒ C=C
1603 cm-1 ⇒ Aromatic C-C bond
H NMR frequency at 2.6 ppm, singlet, ⇒ OH with no surrounding protons, possible deshielding (clearer investigation of spectrum would be expedient).
Hence, our C9H10O2 compound has an aromatic ring and carboxylic acid group attached to it.