Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
Answer:
a)
b) parallel to the earth surface.
- In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.
Explanation:
Given:
mass of the bee,
charge acquired by the bee,
a.
Electrical field near the earth surface,
Now the electric force on the bee:
we know:
The weight of the bee:
Therefore the ratio :
b.
The condition for the bee to hang is its weight must get balanced by the electric force acing equally in the opposite direction.
So,
parallel to the earth surface.
- In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.
The one that help create radio waves is :
Changing electric and magnetic fields applied at right angles
Radio waves are transverse wave, which means that the oscillations occurring perpendicular to the direction of energy transfer
hope this helps
You need 5 blocks of the smaller object to contain the same amount of volume of the bigger object
A surface wave is a wave that travels along the surface of a medium. The medium is the matter through which the wave travels. Ocean waves are the best-known examples of surface waves. They travel on the surface of the water between the ocean and the air. (According to ck12.org)
So your answer would be A!