Answer:
(a)
(b)
Explanation:
<u>Given:</u>
- = The first temperature of air inside the tire =
- = The second temperature of air inside the tire =
- = The third temperature of air inside the tire =
- = The first volume of air inside the tire
- = The second volume of air inside the tire =
- = The third volume of air inside the tire =
- = The first pressure of air inside the tire =
<u>Assume:</u>
- = The second pressure of air inside the tire
- = The third pressure of air inside the tire
- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have
Part (a):
Using the above equation for this part of compression in the air, we have
Hence, the pressure in the tire after the compression is .
Part (b):
Again using the equation for this part for the air, we have
Hence, the pressure in the tire after the car i driven at high speed is .
Answer:
According to studies, the milky way is approximately, "170,000–200,000 light-years (52–61 kpc) in diameter and, on average, approximately 1,000 ly (0.3 kpc) thick."
With that being said, it is safe to say that the dimensions are somewhere around 100,000 by 1,000
Answer:
On the magnitude of the charges, on their separation and on the sign of the charges
Explanation:
The magnitude of the electric force between two charges is given by
where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
r is the separation between the charges
From the formula, we see that the magnitude of the force depends on the following factors:
- magnitude of the two charges
- separation between the charges
Moreover, the direction of the force depends on the sign of the two charges. In fact:
- if the two charges have same sign, the force is repulsive
- if the two charges have opposite signs, the force is attractive
Answer:
<em>a. 4.21 moles</em>
<em>b. 478.6 m/s</em>
<em>c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Explanation:
Volume of container = 100.0 L
Temperature = 293 K
pressure = 1 atm = 1.01325 bar
number of moles n = ?
using the gas equation PV = nRT
n = PV/RT
R = 0.08206 L-atm-
Therefore,
n = (1.01325 x 100)/(0.08206 x 293)
n = 101.325/24.04 = <em>4.21 moles</em>
The equation for root mean square velocity is
Vrms =
R = 8.314 J/mol-K
where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol
Vrms = = <em>478.6 m/s</em>
<em>For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship</em>
=
where
Voxy = root mean square velocity of oxygen = 478.6 m/s
Vnit = root mean square velocity of nitrogen = ?
Moxy = Molar mass of oxygen = 31.9 g/mol
Mnit = Molar mass of nitrogen = 14.00 g/mol
=
= 0.66
Vnit = 0.66 x 478.6 = <em>315.876 m/s</em>
<em>the root mean square velocity of the oxygen gas is </em>
<em>478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Both the size and the shape of the tree changes