Answer:
a) T=1.35s
b) amplitude = 0.0923m
Explanation:
m=300 gr
k=6.5 N/m
first we need to get the angular frequency of the motion
so we have that
ω = √(k/m)
in this case motion is a simple harmonic so the period is defined by:
T= 2π / ω
T= 2π / √(k/m)
replacing the variables...
T= 2π / √(6.5/0.3)
T=1.35s (period of the block's motion)
and...
α max = | ω²r max |
2 = (2π/1.35)² * r max
r max= 0.0923m
The product of (voltage) times (current, in Amperes) is POWER.
To solve this problem it is necessary to apply the concepts related to the principle of superposition and constructive interference, that is to say everything that refers to an overlap of two or more equal frequency waves, which when interfering create a new pattern of waves of greater intensity (amplitude) whose cusp is the antinode.
Mathematically its definition can be given as:
Where
d = Width of the slit
Angle between the beam and the source
m = Order (any integer) which represent the number of repetition of the spectrum, at this case 1 (maximum respect the wavelength)
Since the point of the theta angle for which the diffraction becomes maximum will be when it is worth one then we have to:
Applying the given relation of frequency, speed and wavelength then we will have that the frequency would be:
Here the velocity is equal to the speed of light and the wavelength to the value previously found.
Therefore the smallest microwave frequency for which only the central maximum occurs is 1.5Ghz
weight = mg acts
downwards <span>
normal force = N acts upwards.
and force F acts at an angle θ below the horizontal.
(Let us assume that the woman pushes from the left, so F is
acted towards the right, which is below the horizontal)
so that, Frictional force, f=us*N acts towards the left
Now we balance the forces along x and y directions:
y direction: N = mg + F sinΘ
x direction: us * N = F cosΘ
We let the value of µs be equal to a value such that any F
will not be able to move the crate. Then, if we increase F by an amount F',
then the force pushing the crate towards the right also increases by F' cosΘ. Additionally,
the frictional force f must raise by exactly this amount.
Since f can’t exceed us*N, so the normal force must increase
by F' cosΘ/us.
Also, from the y direction equation, the normal force exceeds
by F' sin Θ.
<span>These two values must be the same, therefore:
<span>us = cot θ</span></span></span>
Answer:
120 m/s if m/s means miles per second than
Explanation:
15 × 8