There are 2071.4662 grams of glucose in 11.5 moles.
Per 1 mole there are 180.15588 grams of glucose. 180.5588 x 11.5 =2076.4262
Answer:
In a chemical change, the atoms in the reactants rearrange themselves and bond together differently to form one or more new products with different characteristics than the reactants. When a new substance is formed, the change is called a chemical change.
Explanation:
The answer is: K is more reactive than Ca because K has to lose only one electron to complete its outermost shell.
Potassium is a chemical element with atomic number 19 (number of electrons is 19).
Electron configuration of potassium is: ₁₉K 1s²2s²2p⁶3s²3p⁶4s¹.
Potassium is the alkali metal and has a single valence electron in the outer electron shell.
Periodic law is the arrangement of the elements in order of increasing atomic number.
For example all alkaline metals (I group of periodic table, Na, K, Cs...) loose one electron in chemical reaction and react vigorously with water.
Reactivity series is an empirical progression of a series of metals, arranged by their reactivity from highest to lowest (alkaline metals have highest reactivity and Noble metals lowest reactivity).
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Alkaline metals (far left in main group) have lowest ionizations energy and easy remove valence electrons (one electron, earth alkaline metals (right next to alkaline metals) have higher ionization energy than alkaline metals, because they have two valence electrons.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
<span>3O2(g) <--> 2O3(g);
Keq = 1 = [O3]^2/[O2]^3
So [O2]^3 = [O3]^2
Thus A) is correct</span>
Answer:
d. 60.8 L
Explanation:
Step 1: Given data
- Heat absorbed (Q): 53.1 J
- External pressure (P): 0.677 atm
- Final volume (V2): 63.2 L
- Change in the internal energy (ΔU): -108.3 J
Step 2: Calculate the work (W) done by the system
We will use the following expression.
ΔU = Q + W
W = ΔU - Q
W = -108.3 J - 53.1 J = -161.4 J
Step 3: Convert W to atm.L
We will use the conversion factor 1 atm.L = 101.325 J.
-161.4 J × 1 atm.L/101.325 J = -1.593 atm.L
Step 4: Calculate the initial volume
First, we will use the following expression.
W = - P × ΔV
ΔV = - W / P
ΔV = - 1.593 atm.L / 0.677 atm = 2.35 L
The initial volume is:
V2 = V1 + ΔV
V1 = V2 - ΔV
V1 = 63.2 L - 2.35 L = 60.8 L