Index fossils are used to determine the relative ages of rock and fossils and are also used to define the boundaries between geologic periods.
<u>Option: A</u>
<u>Explanation:</u>
The fossils which are recognized as fossils guides or indicator fossils are used to classify and recognize geological or faunal periods, termed as index fossils. It must be of short vertical reach, wide geographic distribution and swift patterns in evolution. It helps to assess the rock layers ' age and helps to date other fossils found close and around them. For an instance, Ammonites were abundant in the Mesozoic period between 245 to 65 mya, they have not been found after the Cretaceous era, as they became endangered during the K-T extinction (65 mya).
Answer:
β2= β1+10*f
Explanation:
comparing β2 and β1, it is said that β2 is increased by a factor of f.
for each factor of f, there is a 10*f dB increase.
therefore if the β1 is increases by an intensity of factor f
the new intensity would be β1+ 10*f
<span>e=ca{\displaystyle e={\frac {c}{a}}}.</span>
Answer:
(A) She needs to move the decimal point by 3 places
Answer:
0.54 A
Explanation:
Parameters given:
Number of turns, N = 15
Area of coil, A = 40 cm² = 0.004 m²
Change in magnetic field, ΔB = 5.1 - 1.5 = 3.6 T
Time interval, Δt = 2 secs
Resistance of the coil, R = 0.2 ohms
To get the magnitude of the current, we have to first find the magnitude of the EMF induced in the coil:
|V| = |(-N * ΔB * A) /Δt)
|V| = | (-15 * 3.6 * 0.004) / 2 |
|V| = 0.108 V
According to Ohm's law:
|V| = |I| * R
|I| = |V| / R
|I| = 0.108 / 0.2
|I| = 0.54 A
The magnitude of the current in the coil of wire is 0.54 A