Answer:
see below
Explanation:
First, the obvious, as you press the gas pedal harder the acceleration goes up as well. Conversely, is you do not press the pedal, you will not accelerate. This determines that is I press the gas pedal, it will CAUSE the car to accelerate. This proves causation.
Now, correlation. The definition of correlation in statistics is any statistical relationship between two random variables or data. This simply means that these two events are connected to one another. A POSITIVE correlation is when two correlated events move in the same direction as one another. I have added a graph to help visualize this. In this problem as the gas is pressed harder, the acceleration increases. If the pressure on the pedal was decreased, then the acceleration also decreases. If the pressure on the pedal is constant, the the acceleration is constant.
I hope this helps!
Answer:
The answer to the question is
The roller coaster will reach point B with a speed of 14.72 m/s
Explanation:
Considering both kinetic energy KE = 1/2×m×v² and potential energy PE = m×g×h
Where m = mass
g = acceleration due to gravity = 9.81 m/s²
h = starting height of the roller coaster
we have the given variables
h₁ = 36 m,
h₂ = 13 m,
h₃ = 30 m
v₁ = 1.00 m/s
Total energy at point 1 = 0.5·m·v₁² + m·g·h₁
= 0.5 m×1² + m×9.81×36
=353.66·m
Total energy at point 2 = 0.5·m·v₂² + m·g·h₂
= 0.5×m×v₂² + 9.81 × 13 × m = 0.5·m·v₂² + 127.53·m
The total energy at 1 and 2 are not equal due to the frictional force which must be considered
Total energy at point 2 = Total energy at point 1 + work done against friction
Friction work = F×d×cosθ = ( × mg)×60×cos 180 = -117.72m
0.5·m·v₂² + 127.53·m = 353.66·m -117.72m
0.5·m·v₂² = 108.41×m
v₂² = 216.82
v₂ = 14.72 m/s
The roller coaster will reach point B with a speed of 14.72 m/s
Answer:
The wavelength of the visible line in the hydrogen spectrum is 434 nm.
Explanation:
It is given that, the wavelength of the visible line in the hydrogen spectrum that corresponds to n₂ = 5 in the Balmer equation.
For Balmer series, the wave number is given by :
R is the Rydberg's constant
For Balmer series, n₁ = 2. So,
or
So, the wavelength of the visible line in the hydrogen spectrum is 434 nm. Hence, this is the required solution.
I believe if your looking for true or false answer, that the answer is true