Force applied on the car due to engine is given as
towards right
Also there is a force on the car towards left due to air drag
towards left
now the net force on the car will be given as
now we can say that since the two forces are here opposite in direction so here the vector sum of two forces will be the algebraic difference of the two forces.
So we can say
So here net force on the car will be 150 N towards right and hence it will accelerate due to same force.
( (77/4) + 76/2 )/2 = 28.625 km/h is what i got
Answer: velocity of the car is 113.33m/s
Explanation:
From Doppler effect,
in the case which the source is moving towards the observer at rest
f2 = v/(v-vs) *f1
where f2 is the final observed frequency
f1 is the initial observed frequency
v = 340m/s (speed of sound in air)
vs = velocity of the source of sound.
rearranging the above equation
f2*(v - vs) = f1* v
vs = (f1* v/f2) - v
but f1 = 80Hz
f2 = 60Hz
v = 340m/s
substituting,
vs = (80 x 340)/60 - 340
vs = 453.33 - 340
vs = 113.33m/s
velocity of the car is 113.33m/s
Answer:
She will make the jump.
Explanation:
We have equation of motion , , s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
First we will consider horizontal motion of stunt women
Displacement = 77 m, Initial velocity = 28 cos 15 = 27.05 m/s, acceleration = 0
Substituting
So she will cover 77 m in 2.85 seconds
Now considering vertical motion, up direction as positive
Initial velocity = 28 sin 15 = 7.25 m/s, acceleration =acceleration due to gravity = -9.8 , time = 2.85
Substituting
So at time 2.85 stunt women is 10.11 m below from starting position, far side is 25 m lower. So she will be at higher position.
So she will make the jump.
Answer:
Alfred Wegener
Explanation:
Alfred Wegener is a german meteorologist who proposed the theory that the continents drifted, and he presented it to the German Geological Society on January 1912.