First, we write the balanced equation for this reaction:
2KI + Pb(NO₃)₂ → 2KNO₃ + PbI₂
From this equation, we see that there are 2 moles of potassium iodide required for each mole of lead (II) nitrate. Moreover, we may use the formula:
Moles = volume (in L) * molarity
We find the molar relation ship for KI : Pb(NO₃)₂ to be 2 : 1. So:
M₁V₁ = 2M₂V₂
V₁ = 2M₂V₂/M₁
V₁ = 2 * 0.112 * 0.155 / 0.2
V₁ = 0.1736 L
The volume required is 173.6 mL
Answer:It is a nuclear process, where energy is produced by smashing together light atoms. It is the opposite reaction of fission, where heavy isotopes are split apart.
Explanation Fusion is the process by which the sun and other stars generate light and heat.
It’s most easily achieved on Earth by combining two isotopes of hydrogen: deuterium and tritium. Hydrogen is the lightest of all the elements, being made up of a single proton and a electron. Deuterium has an extra neutron in its nucleus; it can replace one of the hydrogen atoms in H20 to make what is called “heavy water.”
Answer:
Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each reactant per mole of reaction. The mass ratios can be calculated by dividing each by the total in the whole reaction.
Explanation: Stoichiometry is the field of chemistry that is concerned with the relative quantities of reactants and products in chemical reactions. For any balanced chemical reaction, whole numbers (coefficients) are used to show the quantities (generally in moles ) of both the reactants and products.
According to the law of conservation of mass, the quantity of the elements, involved in chemical reactions does not change. For example,
H2O2 - > H2O + O2
is wrong, because there are two O atoms on the first side of the equation, and three on the other. To correct it, coefficients must be added, until the amount of both H and O atoms is equal on both sides.
2H2O2 - > 2H2O + O2