Answer:
A
Explanation:
has properties that are different from the original substances.
Answer:
1.089%
Explanation:
From;
ν =1/2πc(k/meff)^1/2
Where;
ν = wave number
meff = reduced mass or effective mass
k = force constant
c= speed of light
Let
ν =1/2πc (k/meff)^1/2 vibrational wave number for 23Na35 Cl
ν' =1/2πc(k'/m'eff)^1/2 vibrational wave number for 23Na37 Cl
The between the two is obtained from;
ν' - ν /ν = (k'/m'eff)^1/2 - (k/meff)^1/2 / (k/meff)^1/2
Therefore;
ν' - ν /ν = [meff/m'eff]^1/2 - 1
Substituting values, we have;
ν' - ν /ν = [(22.9898 * 34.9688/22.9898 + 34.9688) * (22.9898 + 36.9651/22.9898 * 36.9651)]^1/2 -1
ν' - ν /ν = -0.01089
percentage difference in the fundamental vibrational wavenumbers of 23Na35Cl and 23Na37Cl;
ν' - ν /ν * 100
|(-0.01089)| × 100 = 1.089%
Answer:
The answer is
<h2>250 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of object = 25 mL
Density = 10 g/mL
The mass of the object is
mass = 25 × 10
We have the final answer as
<h3>250 g</h3>
Hope this helps you
The correct answer is d) chrima
Answer:
4.23.
Explanation:
<em>∵ pH = - log[H⁺].</em>
<em>For weak acids:</em>
∵ [H⁺] = √(ka)(c).
∴ [H⁺] = √(3.5 × 10⁻⁸)(0.10 M) = 5.92 x 10⁻⁵.
∴ pH = - log[H⁺] = - log(5.92 x 10⁻⁵) = 4.2279 ≅ 4.23.