Have you ever looked up the density of a substance ? You ought to try it. Go ahead. Pick a substance, then go online or open up an actual book and find its density. You will never see any particular volume mentioned along with the density . . . because it doesn't matter. The whole idea of density is that it describes the substance, no matter how much or how little you have of it. The density of a tiny drop of water under a microscope is the same as the density of a supertanker-ful of water.
Answer:
The resultant velocity is <u>169.71 km/h at angle of 45° measured clockwise with the x-axis</u> or the east-west line.
Explanation:
Considering west direction along negative x-axis and north direction along positive y-axis
Given:
The car travels at a speed of 120 km/h in the west direction.
The car then travels at the same speed in the north direction.
Now, considering the given directions, the velocities are given as:
Velocity in west direction is,
Velocity in north direction is,
Now, since are perpendicular to each other, their resultant magnitude is given as:
Plug in the given values and solve for the magnitude of the resultant.This gives,
Let the angle made by the resultant be 'x' degree with the east-west line or the x-axis.
So, the direction is given as:
Therefore, the resultant velocity is 169.71 km/h at angle of 45° measured clockwise with the x-axis or the east-west line.
Answer:
955.36 seconds ≈ 16 minutes
Explanation:
Power(P) is the rate of doing work(W)
That is, P = W/t, where t is the time.
multipying both sides with 't' and dividing with 'P', we get: t=W/P
Here, W = 5.35 x 10^10 J and P = 5.6 x 10^7 W ( 1 W = 1 J/s).
Therefore , on dividing W with P, we get 955.36 seconds.
The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
I think it was Isaac Newton