The absolute value of a number will never be negative because absolute value is the distance from zero, so it will always be positive. For example, you can't be -6 away from 0, you are 6 away from 0.
We are given:
Our goal in solving for any variable, in this case is x, we need to isolate x on one side of the variable. Let's start by subtracting 7x from both sides, which will cancel the +7x on the right side. We are then left with:
Now, we want to move that +10 to the other side so our x is all by itself. Let's subtract 10 from both sides, which will cancel the +10 on the right leaving us with:
Since we cannot have a coefficient when solving for x, we need to divide both sides by -3.
When we divide, our answer is:
Answer:
100 people
Step-by-step explanation:
<em>Population</em><em> </em><em>Of</em><em> </em><em>People</em><em>=</em><em>1</em><em>1</em><em>5</em><em>Percentage</em><em>ncrease</em><em>=</em><em>1</em><em>5</em><em>%</em>
<em>The</em><em> </em><em>New</em><em> </em><em>Population </em><em>corresponds </em><em>to</em><em> </em><em>1</em><em>1</em><em>5</em><em>%</em>
<em>(</em><em>That</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>+</em><em>1</em><em>5</em><em>)</em>
<em>We</em><em> </em><em>want</em><em> </em><em>to </em><em>find</em><em> </em><em>the</em><em> </em><em>popula</em><em>tion</em><em> </em><em>that</em><em> </em><em>corresponds</em><em> </em><em>to </em><em>100%</em><em> </em><em>that </em><em>is </em><em>the</em><em> </em><em>original</em><em> </em><em>population</em><em>.</em>
<em>Therefore</em><em> </em><em>Original </em><em>Population</em><em>;</em>
<em></em>
<em></em>
Answer:
Total cost of equipment was $612. The remaining amount was spent on uniforms.
To find out how many uniforms were purchased,
Total cost of uniforms
=$912-$612
=$300
Number of uniforms purchased
=
$
300
$
25
=12
Step-by-step explanation:
Answer:
y = 4x -19
Step-by-step explanation:
y = 4x + b
first we add the point to the equation and then we solve for b
-3 = 4 ( 4 ) + b
-3 = 16 + b
-16
-19 = b