The wavelength of the note is
. Since the speed of the wave is the speed of sound,
, the frequency of the note is
Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by
where
is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components
The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components
So we have enough information to solve for the components of the acceleration vector, and :
The acceleration vector then has direction where
Answer:
The intensity of the electric field is
Explanation:
The electric field equation is given by:
Where:
- k is the Coulomb constant
- q is the charge at 0.4100 m from the balloon
- d is the distance from the charge to the balloon
As we need to find the electric field at the location of the balloon, we just need the charge equal to 1.99*10⁻⁷ C.
Then, let's use the equation written above.
I hope it helps you!
Answer:
The work is calculated by multiplying the force by the amount of movement of an object (W = F * d). A force of 10 newtons, that moves an object 3 meters, does 30 n-m of work. A newton-meter is the same thing as a joule, so the units for work are the same as those for energy – joules.
Explanation: