Answer: The concentration in the blood is lower
Explanation:
Answer:
The critical temperature of a substance is the temperature at and above which vapour of the substance cannot be liquefied, no matter how much pressure is applied.
The correct option is (b)
NaNH2 is an effective base. It can be a good nucleophile in the few situations where its strong basicity does not have negative side effects. It is employed in elimination reactions as well as the deprotonation of weak acids.Alkynes, alcohols, and a variety of other functional groups with acidic protons, such as esters and ketones, will all be deprotonated by NaNH2, a powerful base.Alkynes are deprotonated with NaNH2 to produce what are known as "acetylide" ions. These ions are powerful nucleophiles that can react with alkyl halides to create carbon-carbon bonds and add to carbonyls in an addition reaction.Acid/base and nucleophilic substitution are the two types of reactions.Using the right base, terminal alkynes can be deprotonated to produce a carbanion.A good C is the acetylide carbanion.The acetylide carbanion can undergo nucleophilic substitution reactions because it is a potent C nucleophile. (often SN2) with 1 or 2 alkyl halides with electrophilic C to create an internal alkyne (Cl, Br, or I).Elimination is more likely to occur with 3-alkyl halides.It is possible to swap either one or both of the terminal H atoms in ethylene (acetylene) to create monosubstituted (R-C-C-H) and symmetrical (R = R') or unsymmetrical (R not equal to R') disubstituted alkynes (R-C-C-R').
Learn more about NANH2 here :-
brainly.com/question/12601787
#SPJ4
A: because the light is lower than the hole, it will come in at in inclined angle. if the hole was say at the same level as the hole, it would shine straight to the other side of the box
Answer:
sp3 hybridization
Explanation:
Hybridization means the mixing of atomic orbitals to yield hybrid orbitals with characteristics that are different from that of the isolated atomic orbitals before the combination.
sp3 hybridization occurs when one s orbital is mixed with three p orbitals to yield four sp3 hybrid orbitals which can be used to bond to a central atom.
The central atom is then located at the center of a regular tetrahedron at a bond angle of 109°.