Answer:
I believe its primary succession
Explanation:
your answer is B.
A. Archaea inhabit extreme conditions and their cell walls do not contain peptidoglycan.
C. Eukarya are the basics for animals, plants, fungi, slime molds, and other living organisms.
D. Monera is a classification of any prokaryote of the Bacteria or archaea domain
Fish have <span>Eukaryotic cells
</span>
Answer:
Gay Lussac's Law - states that the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature. If you heat a gas you give the molecules more energy so they move faster. This means more impacts on the walls of the container and an increase in the pressure.
Explanation:
<u>Answer</u>:- Active transport
<u>Explanation</u>:-
There are two types of membrane transports
1. Passive transport - this type of transport occurs without the input of any energy and the molecules move along the concentration gradients that is from <em>high concetration to low concentration.</em>
2. Active transport- this type of transport takes place to move the molecules against the concentration gradient that is from <em>low concentration to high concentration.</em>
<em>The active transport is of two types:</em>
1. <em>Primary active transport-</em> in this type of transport <em>ATP</em> is used as an energy source to move the substances against the concentration gradient.
2.<em>Secondary active transport</em> - in this type of transport the gradient formed by the active transport is utilized and it involves the movement of 2 substances at a time aross the membrane. That is the movement of one molecule is coupled to another.
- The membrane proteins that are associated with active transport are called as <em>carrier proteins</em>. These proteins have a binding site for the molecules that they transport. Once they bind to the specific molecules, a conformation change is induced and this leads to the transport of the molecule across the membrane.
So, the <em>active transport is basically responsible for utilizing the energy from ATP and carrier proteins to move the substances across the membrane against their concentration gradient i.e. from low concentration to high concentration.</em>