Answer : B) The cow pulls back on the girl.
From newton’s third law we know that every action has a reaction force pushing back. So when the girl pulls on a cow, the cow is pulling back on her.
Refer to the diagram shown below.
The given data is
mass, kg Coordinates. m
------------- -----------------
2 (0, 0)
2 (2, 0)
4 (2, 1)
Total mass, M = 2+2+4 = 8kg
Let (x,y) be the coordinates of M.
Then, taking moments about the origin, we obtain
8x = 2*0 + 2*2 + 4*2 = 12
x = 1.5 m
8y = 2*0 + 2*0 + 4*1 = 4
y = 0.5 m
Answer: (1.5, 0.5) m
Answer:
In physics, work is defined as the use of force to move an object. For work to be done, the force must be applied in the same direction that the object moves. Work is directly related to both the force applied to an object and the distance the object moves. <em>[I HOPE THIS HELPS* PLS MARK ME BRAINLIEST]</em>
Answer:
Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:
a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.
Answer:
The answer is 20727w
Explanation:
The formula is below;
P = d r^2 v^3 *efficiency
In the question, it is stated that the registration ignores efficiency so we are going to ignore efficiency in the equation and use it this way;
P = d r^2 * v^3
d =4.3, r = 1.59, v =n 12.4
Therefore, P = 4.3 X 1.59^2 X 12.4^3 = 20727W