Plug into calculator...
solve(2(-y+1)-3y=-30,y)
y=6.4
- Given ⇔ 1. ∠PRS and ∠VUW are supplementary
- Angles forming a linear pair sum of 180° ⇔ 3. ∠PRS + ∠SRU = 180°
- Definition of Supplementary angle ⇔ 2. ∠PRS + ∠VUW = 180°
- Transitive property of equality ⇔ 4 . ∠PRS + ∠VUW = ∠PRS + ∠SRU
- Algebra ⇔ 5. ∠VUW = ∠SRU
- Converse of Corresponding angle Postulate ⇔ Line TV || Line QS
<u>Step-by-step explanation:</u>
Here we have , ∠PRS and ∠VUW are supplementary . We need to complete the proof of TV || QS , with matching the reasons with statements .Let's do this :
- Given ⇔ 1. ∠PRS and ∠VUW are supplementary
- Angles forming a linear pair sum of 180° ⇔ 3. ∠PRS + ∠SRU = 180°
- Definition of Supplementary angle ⇔ 2. ∠PRS + ∠VUW = 180°
- Transitive property of equality ⇔ 4 . ∠PRS + ∠VUW = ∠PRS + ∠SRU
- Algebra ⇔ 5. ∠VUW = ∠SRU
- Converse of Corresponding angle Postulate ⇔ Line TV || Line QS
Above mentioned are , are the statements matched with expressions on right hand side (RHS) .
- The Corresponding Angles Postulate states that, when two parallel lines are cut by a transversal , the resulting corresponding angles are congruent .
- The converse states: If corresponding angles are congruent, then the lines cut by the transversal are parallel.
I think it’s 1????? correct me if i’m wrong
We want the translation which maps X to X', etc.
If there is one, these will all be equal:
X' - X = (3, -5) - (0,0) = (3, -5)
Y' - Y = (0, -5) - (-3, 0) = (3, -5)
Z' - Z = (0, -1) - (-3, 4) = (3, -5)
They're all equal, and they're all our translation:
X' = X + (3, -5)
That's three units to the right, five down, last choice.