The zone that gases always accelerate upward is the Luminous flame zone. The fire plume is the column of hot gases, flames and smoke rising above a fire. Gases accelerate upward toward the always luminous flame zone. The luminous flame height is the distance between the base of a flame and the point at which the plume is luminous half the time and transparent half the time.
Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
The greater the MASS of a moving object, the more kinetic energy it has. <3
You've given the answer, right there in your question.
The "magnitude of gravity" is described in terms of the acceleration
due to it, and you just told us what that is.
We can also notice that the figure you gave is about 0.66 of the
acceleration due to gravity on the Earth's surface. That tells us that
the distance from the Earth's center at that height is about
(1 / √0.66) = 1.23 times
the Earth's radius, so the height is about 910 miles above the surface.
Answer:
68cm
Explanation:
You can solve this problem by using the momentum conservation and energy conservation. By using the conservation of the momentum you get
m: mass of the bullet
M: mass of the pendulum
v1: velocity of the bullet = 410m/s
v2: velocity of the pendulum =0m/s
v: velocity of both bullet ad pendulum joint
By replacing you can find v:
this value of v is used as the velocity of the total kinetic energy of the block of pendulum and bullet. This energy equals the potential energy for the maximum height reached by the block:
g: 9.8/s^2
h: height
By doing h the subject of the equation and replacing you obtain:
hence, the heigth is 68cm