Answer:
Explanation:
F = ma. For us, this looks like
60 = 30a and
a = 2 m/s/s
If the force goes up to, say, 90, then
90 = 30a and
a = 3...if the force goes up, the acceleration also goes up.
If the mass goes up to say, 60, and the force stays the same, then
60 = 60a and
a = 1...if the mass goes up, the acceleration goes down.
Answer:
Explanation:
For the simple pendulum problem we need to remember that:
,
where is the angular position, t is time, g is the gravity, and L is the length of the pendulum. We also need to remember that there is a relationship between the angular frequency and the length of the pendulum:
,
where is the angular frequency.
There is also an equation that relates the oscillation period and the angular frequeny:
,
where T is the oscillation period. Now, we can easily solve for L:
Answer:
It is 52° below the celestial equator.
Explanation:
The declination is the angle in degrees measured north (+) or south (-) of the an imaginary line called the celestial equator.
The celestial equator is a projection of the earth's equator on the celestial sphere. imaginary
The star named Canopus has a declination of approximately –52°.
Since the angle is negative, this shows that it is south or below the celestial equator and at 52° south of the celestial equator.
Thus, the star named Caponus is 52° below the celestial equator.
D. 5.0A because this is right and will lead to the right answer okay you got this girl letssssss goooo googoggo Gogol