Answer:
a) 298.5 nm
, 522.4 nm and b) radiation frequency does not change
Explanation:
When electromagnetic radiation reaches a medium with a different index of refraction, the medium vibrates the molecules, as if it were a resonance process, whereby the medium vibrates at the same frequency as the incident light.
On the other hand, when the light reaches another medium its average speed within the medium changes, it is now less than the speed of light in a vacuum (c) for this to happen as we saw that the frequency is constant there must be a change in the wavelength of the radiation that is characterized by the ratio
λₙ = λ₀ / n
λₙ = 400 nm in the void
λₙ = 400 / 1.34
λₙ= 298.5 nm
λ₀ = 700 nm
λₙ = 700 / 1.34
λₙ = 522.4 nm
The radiation frequency does not change
Answer:
-20000 kgm/s
Explanation:
Impulse: This can be defined as the product of the mass of a body and its change in velocity. The S.I unit of impulse is kgm/s.
Mathematically, impulse can be expressed as
I = m(v-u).............. Equation 1.
Where I = impulse applied to the car to bring it to rest, m = mass of the car, u = initial velocity of the car, v = final velocity of the car.
Given: m = 1000 kg, u = 20 m/s, v = 0 m/s ( to rest)
Substitute into equation 1
I = 100(0-20)
I = 1000(-20)
I = -20000 kgm/s
Hence the impulse applied to the car to bring it to rest = -20000 kgm/s
Here is the correct answer of the given problem above.
Given that the basket has a mass of 5.5kg, the magnitude of the normal force if the basket is at rest on a ramp inclined above the horizontal is at 12 degrees. The solution is simple:
<span>Fn at rest = lmgl </span>
<span>= 5.5kg (9.80N/kg)
=</span><span> mgCos12degrees
Hope this answer helps. </span>
Answer:
Power factor = 0.87 (Approx)
Explanation:
Given:
Load = 1 Kw = 1000 watt
Current (I) = 5 A
Supply (V) = 230 V
Find:
Power factor.
Computation:
Power factor = watts / (V)(I)
Power factor = 1,000 / (230)(5)
Power factor = 1,000 / (1,150)
Power factor = 0.8695
Power factor = 0.87 (Approx)