You need to subtract everything to the left side and set it equal to zero. Combine like terms.
Then, the coefficient of x^2 is a, the coefficient of x is b, and the constant term is c.
4x^2 - 5 = 3x + 4
4x^2 - 3x - 5 - 4 = 0
4x^2 - 3x - 9 = 0
a = 4; b = -3; c = -9
Assuming you pick 3 students at random, The probability that at least two plan on attending college is 84%.
<h3>Probability</h3>
Using Binomial Distribution
Given:
n = 3
p = 0.75
q = 1-0.95 = 0.25
Hence:
P[≥2] = P[2] + P[3]=(3c2 ×0.75²×0.25) + 0.75³
P[≥2] = P[2] + P[3]=0.421875+0.421875
P[≥2] = P[2] + P[3]=0.84375×100
P[≥2] = P[2] + P[3]=84% (Approximately)
Inconclusion the probability that at least two plan on attending college is 84%.
Learn more about probability here:brainly.com/question/24756209
The dog eats 6 cupcakes in 22 days.
<em>(don't know why a dog would be eating cupcakes in the first place, but sometimes math questions don't make the most sense)</em>
PQS = 40 because if you look at the image above it half equals 20 and 20+20=40
Answer:
A 90
Step-by-step explanation:
multiple ways to prove this.
e.g. since the angle between the two lines from the center of the circle to the 2 tangent touching points is 90 degrees (that is the meaning of these 90 degrees here as the angle of the circle segment defined by the 2 tangent touching points and the circle center), the tangents have the same "behavior" as tan and cot = the tangents at the norm circle at 0 and 90 degrees. they hit each other outside of the circle again at 90 degrees.
another way
imagine the two right triangles of the tangents crossing point to the circle center and the tangent/circle touching points.
the Hypotenuse of each triangle is cutting the 90 degree angle of the circle segment exactly in half (due to the symmetry principle). so the angle between radius side and Hypotenuse is 90/2 = 45 degrees.
that means also the angle of such a right triangle at the tangent crossing point is 45 degrees (as the sum of all angles in a triangle must be 180, we have the remainder of 180 - 90 - 45 = 45 degrees).
the angles of both right triangles at that point are the same, and so we can add 45+45 = 90 degrees for the total angle at the tangent crossing point.