Answer:
Four charges of equal magnitude sitting at the vertices of a square
Explanation:
We can arrive at such a situation by thinking of a simple example first, a configuration of two charges. The force acting on the middle point of a straight line joining the two points(charges) will be zero. That is, the net Electric field will be zero as they cancel out being equal in magnitude and opposite in direction.
Now, we can extend this idea to a square having charge q at each vertex. If we put 'p' at the geometric center, we can see that the Electric fields along the diagonals cancel out due to the charges at the diagonally opposite vertices(refer to the figure attached). Actually, the only requirement is that the diagonally opposite charges are equal.
We can further take this to 3 dimensions. Consider a cube having charges of equal magnitude at each vertex. In this case, the point 'p' will yet again be the geometric center as the Electric field due to the diagonally opposite charges will cancel out.
Im pretty sure it’s a because it makes more sense you know?.
Answer:
a) the distance between her and the wall is 13 m
b) the period of her up-and-down motion is 6.5 s
Explanation:
Given the data in the question;
wavelength λ = 26 m
velocity v = 4.0 m/s
a) How far from the wall is she?
Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;
x = λ/2
we substitute
x = 26 m / 2
x = 13 m
Therefore, the distance between her and the wall is 13 m
b) What is the period of her up-and-down motion?
we know that the relationship between frequency, wavelength and wave speed is;
v = fλ
hence, f = v/λ
we also know that frequency is expressed as the reciprocal of the time period;
f = 1/T
Hence
1/T = v/λ
solve for T
Tv = λ
T = λ/v
we substitute
T = 26 m / 4 m/s
T = 6.5 s
Therefore, the period of her up-and-down motion is 6.5 s
Answer:
The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).
From the equation below, the stars distances can be calculated.
D = 1/p
Distance = 1/(parallax angle)
Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.
Explanation:
Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.
The parallax of an object can be used to approximate the distance to an object using the formula:
D = 1/p
Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years
Answer:
Wedge
Explanation:
Scissors are a pair of wedges that are combined together.